
[Khezri, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [261]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

THE NEW APPROACH TO IPC IN THE MICROKERNEL USING SOFTWARE

ARCHITECTURE

Bahareh Khezri

Department of IT and Computer Engineering,

Payame Noor University, 19395-4697, Tehran, I.R. of Iran

ABSTRACT
Operating System has been evolved from Monolithic Kernel to Microkernel architecture. The Monolithic Kernel is

still popular due to its performance. Due to this, the other issues associated with monolithic kernel are unable to be

highlighted that include thousands lines of code (LOC) causing complexity issues and its frequently crashing

behavior which most of the times cause a system to crash. In this paper, we try to use software architecture style

based on Event-Driven and message passing communication method and determine a framework for interaction

among practicable processes on OS. In the proposed method, the required data are sent to the process or other

processes in a standard message frame and with determined structure to the OS, then, the OS distributes the received

message considering its recipient processes in the system, rather a process communicates directly with other specific

process. The major features of the proposed method include the synchronization among the processes, the simplicity

of implementation, easy extensibility, remote access which finally can improve the interaction between the OS and

processes. In this paper, try to discuss issue and provide the solution but not to the level of implementation

programming.

KEYWORDS: Linux, Architecture, Process, Microkernel, Operating System

INTRODUCTION
The software architecture style based on event is one

of the most successful and most used available

architecture in designing extensible systems. In this

architecture style, summoning the operation is

separated from its operation as the applier of a

service is independent from the provider and mainly

doesn’t know about it [1]. Even it is possible that in a

distributed system, these two elements are operating

in two separated processor. We, in this paper, use

communication processes as the sub-group of

independent component. In this architecture style, the

general principles and rules of implicit innovation

Event-Based systems are almost dominated. In this

style, each element has a series of operations and

events. The elements acted in a way to assign some

of their elements to some of the events related to the

system other elements in order to do operation as an

event occurred [2].

Communication Processes style is based on implicit

summoning which means that a software element

creates an event rather it summons a system directly.

Then, it generally distributes the event in the total

system [2]. So, by producing an event implicitly, a

software elements cause to operate some operations.

It is as the element can't determine which processes

may be operated. In this architectural style, the main

emphasis is based on message passing among

software elements. This feature causes that concepts

such as event occurrence and event general

distribution take a specific meaning [3]. Event

occurrence means the message delivery to a software

system. For general distribution of its occurrence, it

can be distributed by a message communication

protocol among other elements. In this paper, the

processes are implemented in a way that firstly it

arranges a message containing the necessary data to

communicate with the other processes in a message

frame based on XML structure and then sends it to

available Event Bus in the Operation System (OS)

core instead of a process wants to make relation

directly with the other. Then, based on determined

security decisions, the OS generally distributes the

received message in the system and among the

processes. The available Event Bus in the OS is acted

based on event processing as the messages which

exchange between OS and processes have a standard

and defined structure in total system. As soon as the

message enters to the Event Bus, the OS stimulates

an event similar to the received message and

generally distributes it. Due to the above mentioned

http://www.ijesrt.com/

[Khezri, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

262

structure for the OS, the processes must be in a way

to adjust with the above structure and make relation

with it. To do so, we design a standard connector for

the system processes as when a program is changed

to the process and its specific data recorded in the

available processes tables in the OS, the OS provides

the mentioned connector for each process. It includes

an event processor and necessary buffers for sent and

received messages to the process. The connector

provides the ability of making relationship with the

external environment without its affection on the

internal structure.

In the proposed method, it is used the structure based

on XML which involve high flexibility and

processing rate. In message passing procedure among

them, a process may reply to the received message.

Consequently, it regulates the reply in a standard

structure and almost similar to the sent messages

structure and then sends it to the determined module.

It causes more integrity between the processes and

request and responses structure. The main features of

the proposed method include the simplicity of

implementation, easy expandability, remote access

and the lack of necessity of synchronization among

processes. By observing and improving detailed

points in the proposed method, it can be reached to an

acceptable efficiency in making relationship between

the processes and the OS [3, 4].

We organize the general structure of this paper as

follow. In section 2, it is reviewed previous strategies

about IPC. In section 3, we review the proposed

strategies of IPC and its general structure. We also

point out to its internal and external structure and

review the internal modules, separately. In section 4,

we introduce the proposed method and finally in

section 5, it is introduced the conclusion and also

future works and studies about IPC and specific the

proposed method. We also apply Enterprise Architect

7.0 to model the proposed method and provide UML

charts.

PREVIOUS STRATEGIES
There are different mechanisms to make relationships

among the processes which have advantages and

disadvantages. File System IPC method is a

mechanism in which the process writes the source of

data in a file and then reads the data target from the

file. It has a simultaneous problem but it can be

removed by locking. Also, by using a specific type of

files, the using method can be facilitated [5, 7]. The

other applied mechanism is Message-Based IPC. In

this method, the process puts the data source in a

specific frame in a message and sends it to the OS.

Then, the OS places the message in the array of input

messages of target process. Finally, the target process

reads the message from input array. In this method,

the message sender can be either waited the receiver

reply or not [8]. The other applied method is

procedure call IPC method. In this method, it is used

sub-procedures to make relationship among the

processes. The data are sent through parameters and

the reply reaches to the recipient as a returning value.

The process usually waits for sub-procedures reply

and in fact, it is blocked. As the target sub-procedures

put in a different address space, the complexity is

increased [8, 9]. Shared Memory IPC is another

mechanism to make relationships among the

processes. In this method, the different processes

share a general part of memory among themselves.

This memory can be either physical or available

virtual. The relationship among these processes is

provided through this Shared Memory reading and

writing. It is necessary to use mechanisms to remove

the simultaneous problem and/or apply semaphore

[10, 11]. The issues which must be considered

important about IPC and most available methods

have deficiencies about it include the simultaneous

problem among the processes to the variable or the

Shared Memory during access time, the blocking of

source and target processes after message sending to

receive the reply from the other party and also the

addressing method in IPC. Finding an optimal

method to solve these problems will help us to reach

a mechanism with high efficiency to provide secure

and fast relationships among the processes [11].

NEW STRATEGY OF IPC
Due to our proposed architecture about the OS and

processes function, we, in this paper, want to divide

the system architecture to two separated parts with

different functions. The necessity of providing two

separated parts in the system indicates that the nature

of expandable systems involve parts in which handle

general and common tasks among all system parts

and in fact performs the management tasks of total

system. The structure of these parts in the system is

almost constant and its goal is to manage variable

components in the system. It is so-called system core.

Beside the core, there are other parts in the system

with variable availability and can act according to

different goals in the system. The activity of these

parts is done under the control of system core so the

elements placed in this part are so called module. We,

in this paper, consider the OS as the central core

which in fact handles the management tasks in the

[Khezri, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

263

system and the processes as modules which do their

tasks under the control of the available processes in

the system. The OS handles the main tasks as the

system core as it knows about the available status of

the processes and identifies and controls them.

Consequently, by designing an Event Bus which is

capable of making relationship with the available

process table, it can be provide relationship and

interact among different processes. The processes are

also can be structured as the separated parts of the OS

involved a connector besides the independency

feature which is capable of interaction with each

other through the available Event Bus in the system

core [12, 13]. Fig (1) indicates the system general

frame and its relationship.

Fig. 1. The General Structure of the System and

its Interaction with Different Parts

As it can be seen in Fig (1), the space of the OS is

divided to two separated parts of Kernel Space and

User Space. The Kernel Space plays its role as a

central core in our proposed system and includes two

parts: Process Table and EBCP. The Process Table

can be used as a reference for Event Bus to access

and identify the processes. Event Bus or EBCP is

acted as an intelligent pipeline in the system and is

accessible in the total system and all processes.

EBCP as a general connector is capable of making

relationship among the system different parts and

processes. It processes the messages based on

standard structure and then identifies it by using

Process Table of the system processes and/or target

processes. Then, it stimulates the message event in

the total system and distributes it.

In the other part of the OS, there is User Space which

includes the available and in process processes of the

system which can be structurally different [14].

However, each one must have a standard and defined

connector to make relationship with the internal

structure and other processes. The Event Engine can

be produced by the process itself but it is better to

produce by the OS due to its specified internal

structure. Then, during the process entry to the

memory, it delivers to the process. The Event Engine

connector acts as an interface between the process

and external environment. It receives and sends the

message using method based on message and XML

structure. The Event Engine connector of each

process has mutual interaction with the available

EBCP in the core of OS. In fact, each action or

reaction from system processes and/or core must be

done through EBCP. As a process decides to make

relationship with another process, firstly, it produces

a message which includes receiver and sender

characteristics as well as the message major data in a

structural frame based on XML through its specific

Event Engine. Then, the Event Engine process sends

the message to EBCP. After receiving message,

EBCP processes it and identifies the target processes

using Process Table and finally by using an event,

distributes the message among the target processes,

simultaneously. The target processes produce a

message with similar structure and send to the source

process if replying to the message is required [15,

16].

The Structure of the OS for the Processes
In our proposed strategy, the OS must have a series

of distinct parts to control independent processes and

manage them during the availability of the process in

the memory. As some of these controlling features

are essential for accurate function of processes and

also for the OS as the manager of processes, so, these

strategies are provided in the OS before [16]. So, we

use these controlling features as a key to reach the

processes in our proposed strategy. The OS uses

process table to control and manage the processes.

Consequently, it is used Process Table as a reference

to access the available processes in the system and

making relationship between the source and target

processes [14, 16]. In this paper, the available EBCP

in the OS which handles the relationships among the

processes is so called EBCP. Its internal structure is

indicated in Fig (2).

[Khezri, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

264

Fig. 2. The Internal Structure of EBCP

As it can be seen Fig (2), the Process A produces a

message based on XML structure and sends it to

EBCP of the OS to make relationship with A, B and

C processes. The sent messages to EBCP are firstly

stored in input buffer. It causes that as the received

and sent messages of processes is increased, EBCP

can manage them better. The available messages in

input buffer are processed as first in first out by

Event Processor Engine, respectively. Based on

determined policies for Event Processor Engine

module, it sends the available messages in input

buffer to all or some of system processes. This

module has a behavior called Raise Event which

handles message distribution in the system [17].

EBCP module uses process table as a reference to

access and identify the processes.

In this step, it must be considered a basic and

important problem in efficiency and security of

system and that is the distribution method of sent

message from a process [17, 18]. When a process

makes a decision to communicate with other process,

it must produce a message involved necessary data in

a pre-defined structural frame and then sends it

through its connector to EBCP. After message entry

to EBCP, it must be determined the system policy

about how to deal with messages to provide the

system security and efficiency in the best possible

way [19]. In this case, the OS can be acted in two

ways:

the OS can act in a way to generally distribute the

received message of a process in total system and

sends it to all available processes in the system. In

this case, there is no need to add additional data

field to process table. All available processes receive

the sent message system from a process. The

advantage of this case is that the message structure

is simpler and decreases system complexity. There is

also no need to add additional data field in process

table. It can be noted to the system security decrease

as the disadvantage of this case. Because, sent

message become available for all system processes

via a process and this may not be desirable for the

source process. Although, can be used coding

methods to find a method of data access controlling.

The other method of this case is the additional load

which applies on input buffers of system processes

http://www.ijesrt.com/

[Khezri, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

265

and resulted in receiving the sent messages of

system other processes. It is as most messages may

not be useful for the system and practically consider

as spam [19, 20].

in another case, the OS can act in a way in which

as a new process enters the system, the OS must

provide circumstances between in process and

newly-entered processes. It causes that the processes

which related and interacted, can find each other.

Then, the newly- entered process identifies the

authorized processes of interaction and provides

their data for the OS. Then, the OS records the

received data as well as other data of newly-entered

process in the process table. In fact, it is required to

save additional data in the processes table [20]. Fig

(3) indicates the stages of operation as sequence

diagram.

Fig. 3. Sequence Diagram of Interaction among the Processes, OS and Newly-Entered Process

Due to Fig (3), as a process enters a system, the OS

records the process in the process table after

assigning variables and required space to the process

as well as specific Event Engine. Then, the OS sends

a message containing an ID of newly-entered process

to each available process in the system. As soon as

the available processes in the system receives the

message from the OS, it sends a cooperation request

message to the newly-entered process (if needed)

which includes a key that only friend and cooperation

processes can identify and process. The newly-

entered process reviews the received key from other

process after receiving cooperation request from

other processes of the system. If the key is accurate,

the considered process will be adopted as the

cooperation process and asks for the OS to record the

noted process as the cooperation process in its

specific entry in the processes table [21].

It can be noted to the full security of relations among

the processes as an advantage of it as only allowed

processes which are validated previously receives the

sent message. In this case, there is no additional load

on the input buffer of the processes because the

characteristics of related processes in the process

table and additional fields which is provided to define

the related processes are available. So, the OS uses

these data and generally distributes the message

among the related fields to the message source. As a

result, the message won’t be sent to the other

available processes which don't have relation with the

http://www.ijesrt.com/

[Khezri, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

266

system source and their input buffer will be empty of

useless and redundant message. In this case, their

input overload will be considerable decrease. It can

be noted to the weakness of this case which includes

adding additional data field to the process table to

determine the related processes and also input load of

system which resulted in interaction among the

processes during new process entry to the system [20,

21].

Standard Connector Definition of the Process

After defining EBCP structure and its function about

the received messages from the processes, we come

to discuss about their structure and how they begin to

make relationship with the other processes and which

stage and steps must be taken to provide a proper and

suitable relationship. As the available processes in

the OS are organized and designed based on modern

OS structure, so, changes in their internal structure

and providing a standard structure for all of them will

expensive and create a kind of limitation in the

system [19, 20 and 21]. In this paper, we try to keep

the current status of the processes internal structure

constant and don't apply changes as the process acts

as necessary in their internal structure. The important

fact is the process external structure and hoe to

interact with the other processes. Along this, to reach

the goal, the best method is to define a standard

connector of producing messages with identifiable

structure in the system and sending to the available

EBCP in the OS. Also, if a message is sent to the

process from EBCP, the connector could receive,

identify and process it [22].

The point which must be considered here is that to

regard the structural independency of the processes

and lack of limit for the processes, producing and

defining the process connector isn't considered as the

tasks of the connector and must be produced by the

specific connector of the OS. The reason is that

structure of connector for all system processes is

constant and defined. As the connector must have a

standard structure in total system, it is better that the

OS produces a specific OS and specifies it to the

processes. The method is that when a program is

converted to a process and the OS records its data in

the process table, the OS produces the specific

connector of new process based on inserted

characteristics in the process table and also available

data about the connector structure and specifies it to

the process. This connector is available in the whole

cycle of available process living and will be

accessible and identifiable via OS. When the process

function ends up, the process connector is destroyed

by the OS and the process is removed from the

system. We, in this paper, called the process

connector Event Engine to determine it from the

main structure of the processes [21, 22 and 23].

The Structure of Process Connector Event Engine

As we noted in Section B, the OS as the process

entered, specifies the specific connector of newly-

entered process and then if it is necessary to have

relationship with the external environment and

special with the other process in the system, it uses

specific connector Event Engine. But the important

fact is the internal structure of the process connector

(Event Engine) and how to function in different

conditions. To reach the optimal and flexible

structure in designing Event Engine, it must be

considered the tasks the connector handles about the

process and the system [23]. The process task, due to

the system expectations from processes and the

processes from each other, can be changed. So,

dynamic extensibility is an important factor which

must be considered in designing Event Engine. But

the most important and main task of Event Engine is

to send and receive the related messages to the

process as it makes the process capable of making

relationship with the system and other processes [23,

24]. If we want to explain the relationships among

the processes in detail, it can be noted to the cases

such as producing the sent messages of the process,

coding and decoding of messages which Event

Engine handles. Due to the noted points, Fig (4)

indicates the proposed model of Event Engine

internal structure in which the edibility and flexibility

as quality features are considered in it.

Fig. 4. The Internal Structure of Process

Connector Event Engine

As it can be seen in Fig (4), Event Engine acts as

a module inside a process based on the process

http://www.ijesrt.com/

[Khezri, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

267

structure. The Event Engine consists of two input and

output buffer. The goal of designing Event Engine is

based on buffer is that it keeps the available Event

Engine efficiency and reaction in the connector when

there is high traffic in the system and the process is

capable of processing and answering to all messages.

The output buffer includes received messages which

from the system core and/or other processes. The

input buffer includes received messages from the

system core and/or other processes. Event Engine

Processor is responsible to distribute available

messages in input and output buffers. As soon as a

message delivers to the input and output buffers, EEP

indicates reaction and sends the message to the target

after coding or decoding [25].

The Structure of Sent and Received Messages

We, in this paper, use an architecture based on event

to distribute and send the messages in the system. So,

it concludes that our method to communicate and

make relationship between processes and different

parts of the system is based on message passing

method [26]. We must answer to a question that how

must be a message which includes sent and received

data between processes and the system designed to

known as integrated in total system and can be

processed by all processes? It is clear that a designer

can improve the system efficiency using different

methods and define the message structure. In

designing the message structure, it must be

considered points such as the message must keep the

main data in the best possible way and completely

readable for the target destination. The structure of

the message must be in a way to determine

completely the source and target of the message [26].

So, in this paper, we use the well-defined structure of

XML to design message structure. The goal of

designing the message structure based on XML is

that we can maximize the readability of the message

by defining particular tags of different parts of a

message and consequently increase the message

processing rate desirably by processes. Developing

and improving the structure of the message to reach

the determined goals in the system is also easily

implemented. In Fig (5), you can see the sample of

sent and received messages structure.

Fig. 5. The Structure of Exchanged Messages

between Processes and the OS

The characteristics of each tag in the provided

structure are provided in Fig (5) and their usages are

shown in Table (1).

TABLE 1. The Provided Tags in the

Available Message Structure in Fig (6)

and their Usage

Tag Description

Event Type Determines that the message is sent or

delivered in reaction to the sent

message

Event ID Determine the event and/or message

code and can be unique and controlled

by the system core

Sent Event

ID

If the message is returned one, it

determines that the message is sent in

response to which sent message

Sender

Name

Determine the name of process or the

message sender which can be the OS

core or a process.

Sender ID Determine the process code or the

message sender unit and can be

inconsistent with the available

processes table in the OS.

Receiver

Name

Determine the name of recipient

which can be a unit of the OS core or

one or a few process.

Receiver

ID

Determine the recipient and can be

arranged based on the processes table.

Date Time Determine the time and date of

message delivery

Input fields It includes data in which the source

sent as input to the target or data in

which the source request the target.

The data of this feature can be a series

of ID and values.

Output

Fields

It includes data in which the target

determines as the message reply after

processing and returns it to the

message sender. The data of this

feature can be a series of ID and

http://www.ijesrt.com/

[Khezri, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

268

values.

EVALUATION
The processes frequently need to make relationship

and communicate with each other and there are

different methods to do this but we prefer to do this

in a way which is better and more structured than

using pauses. In fact, in providing a strategy, it must

be considered several points [7, 10]. Firstly, how can

two processes exchange data with each other? What

can we do to make sure that two or more processes

don’t interfere in their critical activities? When there

is correlation between two or more processes, how

can we perform the synchronization among the

processes to increase the efficiency? Our method to

send data is based on message delivery as it organizes

the data in XML structural frame and exchanges

among the processes. The defined structure for the

messages is in a way to preserve the main indicators

of each message and can add or remove different

controlling options in the future to it if necessary

without its affection on processes and other OS parts.

It is because of the dynamic nature of XML structure

and its support from different kinds of protocols of

data transfer and preserving their security using

coding algorithms which provide data transfer to

remote machines through heterogeneous networks. It

is as the previous methods such as Procedure Call,

the data transfer is done through parameters in which

their numbers and types are static and decrease the

ability of its change and develop [7, 8]. It can be said

about the simplicity of implementation that Message-

Based, Shared Memory and File System methods

have less complexity in implementation than

Procedure Call method if there is different addressing

space. However, these methods are all related to the

addressing space and must perform additional

operations and controls whether the addressing space

is same or different [8, 9]. While in the proposed

method, the required operation to interact between

two processes is related to the minimum data of the

environment and in fact independent from

circumstances two processes have to each other

which considerably decrease the complication. File

System and Shared Memory methods still faced with

synchronization problem among the processes

although strategies such as locking is provided to sole

it but these strategies increase the complication and

decrease the efficiency [8, 10 and 11]. While our

proposed method which compound Message-based

method and software architecture based on event not

only keeps the positive features of Message-Based

using events which acknowledged source and target

processes during occurrence but also increase the

intelligence and synchronization of processes. In

Table (2), it is indicated a general comparison

between our proposed method and the previous ones.

The supportive amount of these methods also

indicates the required features for an optimal IPC.
TABLE 2. Comparing the Proposed

Method and the Previous Strategies

Easy to

Implement
Extendable

Works

Remotely
Synchronization

IPC

Mechanisms

Good Weak Weak Weak Shared

Memory

Good Weak Weak Weak File System

Weak Good Good Good Message

Based

Weak Weak Weak Good Procedure

Call

Good Excellent Good Excellent Proposed

Solution

CONCLUSION AND FUTURE WORKS
We, in this paper, provide a strategy to make

combination IPC based on software architecture

based on event and communication method based on

message passing. As by putting an EBCP in the OS

core and also using OS processes table as a reference

to access to the available processes in the system, we

use it as a communication bridge among the

processes with each other. Moreover, to integrate

processes with the available EBCP in the OS, we use

a connector for each available process in the system.

Providing relationship between the processes and

available EBCP in the OS which considered as a

communicational highway among the processes is the

main tasks of a connector. We also provide a

standard frame based on XML for received and sent

messages structure to increase the readability and

processing rate of messages. It can be noted to the

main features of the proposed method as the lack of

synchronization among the processes,

implementation simplicity, easy expansibility and

remote access. Due to the above-mentioned points, it

can be used the proposed method as the reference to

communicate between processes and also processes

with OS in different kinds of OSs with different

structures. It can also be used message coding and

decoding methods to maximize the security of

exchanged messages among processes. It considers

not only the private limits of modules but also

guarantees the communication security among them.

It can also take major steps by assigning main

responsibilities to the processes at the aim at their

structural independency and increase the OS

modularity.

http://www.ijesrt.com/

[Khezri, 4(1): January, 2015] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

269

REFERENCES
[1] A. Linden, Theodor, “Operating System Structures

to Support Security and Reliable Software”,

Institute for Computer Sciences and Technology,

National Bureau of Standards, Washington D.C.

20234, Issued, August 1976.

[2] M. Swift, B. Bershad, H. Levy, “Improving the

Reliability of Commodity Operating Systems”,

ACM Trans. on Operating Systems, Vol. 23, pp. 77-

110, 2005.

[3] R.P. Goldberg, “Architecture of Virtual Machines”,

Proc. of the Workshop on Virtual Computer

Systems, ACM, pp. 74-112, 1973.

[4] A. Cox, K. Mohanram, S. Rixner, “Dependable ≠

Unaffordable”, 1st workshop on Architectural and

system support for improving software

dependability, San Jose, California, 2006.

[5] A. Grimshaw, M. Humphrey, J.C. Knight, A.

Nguyen-Tuong, J. Rowanhill, G. Wasson, J.

Basney, “The Development of Dependable and

Survivable Grids”, 2005 Workshop on Dynamic

Data Driven Applications, Emory University,

Atlanta, pp. 22-25, 2005.

[6] D. M.Nicol, W. H.Sanders, K. S.Trivedi, “Model-

Based Evaluation: From Dependability to Security”,

IEEE Trans. Dependable and Secure Computing,

Vol. 32, pp. 1-3, 2004.

[7] A. Avizienis, J.-C. Laprie, B. Randell, C. E.

Landwehr.”Basic Concepts and Taxonomy of

Dependable and Secure Computing”. IEEE

Transactions on Dependable and Secure Computing,

Vol. 1, pp. 11–33, 2004.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman,

A. Fox, “Microreboot – A Technique for Cheap

Recovery. In Symposium on Operating Systems

Design and Implementation”, Vol. 25, pp. 31–44,

San Francisco, CA, 2004.

[9] A. S.Tanenbaum, J. N.Herder, H. Bos,“Can We

Make Operating Systems Reliable and Secure?”,

Computer, Vol. 39,pp. 44–51, 2006.

[10] D. Garlan, M. Shaw, C. Okasaki, C. Scott, R.

Swonger, “Experience with a course on

architectures for software systems”, in Proceedings

of the Sixth SEI Conference on Software

Engineering Education, Springer-Verlag, LNCS

376, October 1992.

[11] B. Randell, “Operating Systems: The Problems Of

Performance and Reliability”, University of

Newcastle upon Tyne, Computing Laboratory,

2007.

[12] Y. Bao, X. Sun, K. S. Trivedi, “A Workload-Based

Analysis of Software Aging, and Rejuvenation”,

IEEE Trans. Reliability, Vol. 54, pp. 54-57, 2005.

[13] M. Fowler, “Patterns of Enterprise Application

Architecture”, Pearson Education, Boston, 2003.

[14] M. Fähndrich, M. Aiken, C. Hawblitzel,O. Hodson,

G. Hunt, J.R. Larus, S. Levi, “Language Support for

Fast and Reliable Message Based Communication in

Singularity OS”. In Proceedings of the EuroSys

2006 Conference, Leuven, Belgium, pp. 177-

190,2006.

[15] “Recommended Practice for Architectural

Description of Software Intensive Systems”,

Technical Report IEEE P1471-2000, IEEE

Standards Department, The Architecture Working

Group of the Software Engineering Committee,

2000.

[16] D. Riehle, “The economic motivation of open

source software: Stakeholder perspectives”, IEEE

Computer, Vol. 40, No. 4, pp. 25-32, April 2007.

[17] K. Pope, “Zend Framework 1.8 Web Application

Development”, PACKT Publishing, 2009.

[18] G. Ahn, H. Hu, J. Jin. “Security-Enhanced

OSGi Service Environments”, IEEE

Transactions on Systems, Man and Cybernetics-

Part C: Applications and Reviews, Vol. 39, No.

5, 2009.

[19] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R.

Mee, R. Stafford, “Patterns of Enterprise

Application Architecture”, Addison Wesley, 2002.

[20] R. S. Hall, K. Pauls, S. McCulloch, D. Savage,

“OSGi in Action”, Manning Publications, 2011.

[21] D. Chappell, “Enterprise Service Bus”, O'Reilly

Media, Inc, 2004.

[22] H. Bos and B. Samwel.” Safe kernel programming

in the OKE”, IEEE Open Architectures and

Network Programming, pp. 141–152, 2002.

[23] A. Chou, J. Yang, B. Chelf, S. Hallem, D. R.Engler,

“An Empirical Study of Operating System Errors”,

Symposium on Operating Systems Principles, pp.

73–88, 2001.

[24] J. N. Herder, “Towards a TrueMicrokernel

Operating System”,Master’s thesis”, Vrije

Universiteit Amsterdam, 2005.

[25] D. Chen, S. Dharmaraja, D. Chen, Lei Li, K. S.

Trivedi, R. R. Some, A. P. Nikora, “Reliability and

availability analysis for the JPL Remote Exploration

and Experimentation System”, Proc. of DSN, 2002.

[26] D. S.Kim, F. Machida, K. S.Trivedi, “Availability

Modeling and Analysis of a Virtualized System”,

Proc. of PRDC, 2009.

http://www.ijesrt.com/

